

Alpine Naturgefahren und Herausforderungen für alpine Infrastruktur in der Zukunft

Bauen mit Holz im alpinen Raum Festsymposium Professor Dr. - Ing. Heinrich Kreuzinger

Michael Krautblatter

Fachgebiet Hangbewegungen Ingenieurfakultät Bau Geo Umwelt Technische Universität München Abschätzung zukünftiger Naturgefahren:

- 1. Degradierung Permafrost
- 2. Murgangaktivität
- 3. Steinschlagaktivität

Rockfall scarp Zugspitze 0.3 - 0.4 km³, 3700 B.P. after

Holocene Climatic Optimum Do we understand the processes that link permafrost degradation and rock instability?

Yigong Rock Avalanche April 2000 (Foto by Runqiu Huang)

Hazard due to the 2000 Yigong (Bomi, Tibet, China) rock avalanche

Rock slope failure: April 9, volume 0.28 km³ Landslide dam: 60-100 m high **Blocking** of Yigong Zangbo River **Upstream flooding**: affected 4000 people, several schools/villages & Yigong tea garden Channel construction May 3-June 3: 1000 m long, 150 m wide top, 24 m deep, 1.4 mio m³ **Catastrophic breach** starting June 10 Max. discharge June 11: discharge 120,000 m³/s at Tongmai bridge 17 km downstream, water level 34 m above bridge deck Flood distance: 216 km China, 284 km India, flash flood 450 km downstream 5 m high Effects (India): >20 bridges destroyed (including steel suspension bridges), > 50000 people rendered homeless

Rock slope failure in permafrost rock walls

Kolka-Karmadon rock-/ice avalanche (Russ. Caucasus 2002, 100 mio. m³) 140 casualties

Huggel et al. 2005

Huascarán rock-/ice avalanche (Peru 1970, 50-100 mio m³) 20.000 casualties Erismann and Abele 2001

Rock creep in permafrost rocks

Deformation Gipfelseilbahn (Gemsstock, Andermatt, CH)

Shear force

A. gravitational force

B. hydrostatic pressure

C. ice segregation

Shear resistance

force needed for

- 1. creep and fracture of ice itself
- 2. fracture along rockice contacts

Davies et al. 2003/Fischer et al. 2006 Murton et al. 2006/ Gruber & Haeberli 2007

Davies 2000/Arenson& Springman 2005 Guenzel 2008

- 1. Why/How does thawing affect rock-mechanical properties (friction/fracturing)?
- 2. At what time and spatial scales of destabilisation do rock- or icemechanical processes dominate instability behaviour?
- 3. Empirical evidence for rock mechnical destabilisation when thawing?

Compressive and tensile rock strength during thaw

• Compressive and tensile strength of saturated intact rock decrease by 25-75% when thawing (Mellor 1973).

Fracture toughness during thaw

- Fracture toughness in water-saturated rocks decreases by up to 40% when thawing (Dwivedi et al. 2000)
- This effect is more pronounced for repeated freezing (Inada&Yokota 1984)

Shear resistance of ice itself

- At very low velocity (i.e. strain rate), at which e.g. subcritical cracking of rock bridges occurs, the shear resistance of ice due to creep is negligible.
- Fracturing only occurs at higher velocities (strain rate >10⁻³ s⁻¹; Sanderson, 1988).

A preliminary rock-ice mechanical model

fracture of rock bridges

 $+\sigma'\tan(\phi + JRC * \log 10(\frac{\phi}{\sigma}))$

total friction due to fracture roughness

+ $\frac{\varepsilon_w}{A_0 \exp(-\frac{16700}{T})}$ + $(-145*T_c + 0.47*\sigma' - 3.5)$ reduction of effective shear stress due to secondary/tertiary creep of ice

failure criterion of ice in rock clefts

Dynamic components (yellow):

 $\mid \tau \mid$ shear stress at failure, Kc critical fracture toughness, σ_c compressive strength and temperature T_c [°C] und T [K]

Processes act individually, in succession or in combination

Destabilisation in time

- At very low velocities (strain rates) rock-mechnical processes dominate initial destabilisation.
- Only at higher velocities ice-mechanical outbalance the importance of rock-mechnical processes.

Destabilisation in space

Restriction:

Sample sites

Zugspitze, D/A

Kitzsteinhorn , A

Non-destructive and destructive testing techniques

Non-destructive:

- P- wave velocity
- S-wave velocity
- >Elastic moduli

Destructive:

- Compressive strength (Uniaxial)
- Tensile strength (Brazilian)

Inhomogneity, scale and anisotropy

Inhomogeneity Statistic amounts of samples

Scale:

Differing testing scales with respect to fracture patterns or surface roughness

Anisotropy:

Differing testing directions with respect to fracture/ schistosity orientation

Increase in fracture toughness: P-Wave velocity as a proxy

P-wave velocity is the best correlated factor with K_{Ic} fracture toughess (Chang et al. 2002, $R^2=0.8$).

P-wave velocity can be measured non-destructively and in different directions.

High-resolution (0.2°C increments) changes in P-wave velocity were measured in 22 alpine and arctic rock samples (Dräbing & Krautblatter, 2012, *The Cryosphere*)

3D - Field application (Krautblatter&Draebing, 2014)

Fatigue: Reducing mechanical strength upon repeated freezing

Field-lab analogue testing

Experimental setup: 4 soft chalk blocks, 2 Wetterstein limestone blocks

Instrumentation on each block

Instrumentation:

- 32 galvanic electrodes for ERT
- 32 copper plates for capacitive EIT
- 8 TDR sensors (rock moisture)
- 8 platinum temperature sensors
- 1 heave sensor (0.01 mm)
- 1 geophone (1000 Hz, cont. recording)

Schedule:

- Installation: April 2011 April 2012
- Start of test: April 25, 2012
- Duration: 900 days 2015

Project: CRI-Permafrost, NERC:

Prof. J. Murton, U. of Sussex, Dr. O. Kuras, Brit. Geol. Survey Dr. M. Krautblatter, TUM

900 days, > 20 freezing cycles and resultant shattering

Heave signal

- 16

14

-12

-10

8

Heave (mm)

4

2

0

-2

Quantitative ERT (Zugspitze, 2800 m a.s.l.)

Laboratory calibration

Quantitative ERT (Zugspitze, 2800 m a.s.l.)

Temperature-calibrated ERT (Krautblatter et al. 2010 JGR)

Field work

Transects Aguille du Midi (3842 m a.s.l.)

Piton Central Oct 2010

- Skip 3
- Robust inversion
- Rel. error: 26,97 %
- Abs. error: 0,12 Ω
- Background resistiity: 10.000 Ωm
- Electrode gap 12-15 (storage room)
- 318 datum points

Piton Central Oct 2010

Altered Colour Scale!

- Skip 3
- Robust inversion
- Rel. error: 36,19 %
- Abs. error: 23,07 Ω
- Background
 resistivity: 10.000 Ωm
- 156 datum points

Continuous ERT monitoring for cable car infrastructure

Keuschnig, Krautblatter et al. (in review), PPP

Deriving a model of permafrost-related rock slope failure

Mechanical failure model

Fig. 4: Study site with profile used for modelling.

- G first modelling results: higher xy-displacements and lower factor of safety for "unfrozen condition" (fig. 5)
- O next step 1: assign "frozen material parameter" to frozen zones identified by i) geophysics (ERT, SRT) and ii) direct rock temperature monitoring (fig. 6, right)
- next step 2: calculate with complex topography and joint set configuration

Fig. 6: Sketch of the same rock slope as in fig. 5 with various temperature - stability states corresponding to modelling results in fig. 5.

PhD P. Mamot

Abschätzung zukünftiger Naturgefahren:

- 1. Degradierung Permafrost
- 2. Murgangaktivität
- 3. Steinschlagaktivität